数学与统计学院
学术报告
学术报告 您现在所在位置: 首页 > 学术报告 > 正文
Group Connectivity, Spanning Trees, Realization of A-connected Sequences
文章来源:[]  作者:[撰稿:张朝辉]  时间:[2016-05-26]  阅读: 次

报告题目:Group Connectivity, Spanning Trees, Realization of A-connected Sequences

报告人:罗荣教授西弗吉尼亚大学

邀请人:朱强副教授

报告时间:2016年6月6日下午2:40

报告地点:信远楼II206数统院报告厅

报告人简介

罗荣,美国西弗吉尼亚大学(WestVirginia University,USA)数学系教授、博士生导师,美国数学学会委员,曾任中西部图论会议、AMS东南会议图论会议、坎伯兰会议大会组委会委员,现任Journal of Proteomics & Bioinformatics,Open Journal of Discrete Mathematics,ISRN Discrete Mathematics等期刊编委。主要从事图论、组合、组合矩阵论、图论在化学和生物学中的应用等方面的研究。2007年-2008年在中田纳西州立大学荣获卓越出版奖;2006年-2007年在中田纳西州立大学荣获杰出科研奖励;2003年-2004年在中田纳西州立大学荣获杰出研究员奖。

报告摘要:Let A be an Abelian group. It is known that an A-connected graph cannot be very sparse. We study the extremal problem: find the maximum integer k, denoted ex(n, A), such that every graph with at most k edges is not A-connected. We determine the exact values for all finite cyclic groups. As a corollary, we present a characterization of all Z_k-connected graphic sequences.

It is also known that there are Z_5-connected graph that are not Z_6-connected. We prove that every Z_3-connected graph contains two edge-disjoint spanning trees, which implies that every Z_3-connected graph is also A-connected for any A with order at least 4.

[打印 关闭    
 上一篇: Supereulerian regular matroids
 下一篇: 可追责的属性基加密
地址:陕西省西安市西沣路兴隆段266号(710126)  电话:029-81891371